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Abstract—In this paper we propose a new no-reference (NR)
image quality assessment (IQA) metric using the recently revealed
free energy based brain theory and classical human visual system
(HVS) inspired features. The features used can be divided into
three groups. The first involves the features inspired by the
free energy principle and the structural degradation model.
Furthermore, the free energy theory also reveals that the HVS
always tries to infer the meaningful part from the visual stimuli.
In terms of this finding, we first predict an image that the HVS
perceives from a distorted image based on the free energy theory,
then the second group of features is composed of some HVS
inspired features (such as structural information and gradient
magnitude) computed using the distorted and predicted images.
The third group of features quantifies the possible losses of
“naturalness” in the distorted image by fitting the generalized
Gaussian distribution to mean subtracted contrast normalized
coefficients. After feature extraction, our algorithm utilizes the
support vector machine based regression module to derive the
overall quality score. Experiments on LIVE, TID2008, CSIQ, IVC
and Toyama databases confirm the effectiveness of our introduced
NR IQA metric compared to the state-of-the-art.

Index Terms—Image quality assessment (IQA), no-reference
(NR), free energy, autoregressive model, structural degradation,
human visual system (HVS)

I. INTRODUCTION

IN THE year 2011, over eighty billion digital photographs
were captured throughout the continental United States of

America, and this number will be increasing annually. A natu-
ral problem is that the visual quality of such a great amount of
photographs is hard to guarantee. So the systems to monitor,
control and improve the visual quality of digital photographs
are highly desirable [1]. Image quality assessment (IQA), due
to its capability of simulating human visual perception to
image quality, is usually used to solve this problem.

Generally speaking, IQA approaches can be classified into
subjective assessment and objective assessment. The role of
subjective evaluation is decisive since in most applications it
is human viewers who judge the overall visual quality. One
important function of subjective assessment is to instruct video
coding [2]-[3]. Nonetheless, the subjective IQA is extremely
slow, expensive and laborious, and thus is not suitably applied
under the condition that hundreds of thousands of images are
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acquired, compressed and transmitted every moment. Hence,
an increasing number of researchers have concentrated on the
exploration of objective IQA algorithms.

The largest number of objective metrics are full-reference
(FR) methods [4]-[14], which assume that the original image
signal is completely known. The mean-squared error (MSE)
and its relevant peak signal-to-noise ratio (PSNR) were very
popular owing to their low computational cost, high portability
and clear physical meaning, but they were found to poorly
correlate with human judgments of image quality, i.e. the mean
opinion score (MOS) [15]. To this end, the structural similarity
index (SSIM) [4] and its variants [5]-[10] have been developed
in the pursuit of higher performance.

However, the application scope of FR IQA is largely limited
since the original image is unavailable in most cases. Suppos-
ing that partial original references can be made available as
side information, reduced-reference (RR) IQA techniques have
lately attracted great concerns and acquired fairly well per-
formance for different types of distortions [16]-[20]. Yet RR
IQA still requires original information in practice, leading to
its incompatibility with most existing image/video processing
systems that do not permit extra RR information.

To solve the problem of the dependence of original images,
many blind quality measures have been developed for specific
distortion types during the last decade [21]-[28]. Wang et al.
[21] introduced a No-reference JPEG-quality Evaluator (WN-
JE) based on the estimation of blocking effects and relative
blur. Marziliano et al. proposed a Blind Blur Metric (MBBM)
[22] to measure the spread of image edges from horizontal and
vertical directions. Very recently, the topic of noise estimation
has obtained intensive researches. One type of methods is
scale invariant based noise estimator (SINE) [24] and its
variant [25], which suppose that the kurtosis values tend to
be invariant across scales for a natural image and this scale
invariance will be deteriorated by the added noise. In addition,
some recent advances in brain science and neuroscience [29]-
[30] motivated us to design the no-reference free energy based
quality metric (NFEQM) [17] for predicting the quality of both
blurry and noisy images.

Note that those above blind measures are distortion-specific.
Therefore, the general-purpose blind/no-reference (NR) IQA
methods have been emphatically studied in recent years [31]-
[38]. The general-purpose NR IQA can be mainly categorized
into two classes. The first is to extract effective features from
distorted images followed by training a regression module
using those features. Inspired by the natural scene statistics
(NSS) model, DIIVINE [31], BLIINDS-II [32] and BRISQUE
[33] were respectively proposed to work in DWT, DCT and
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spatial domains. Besides, our NFSDM was designed with an
alternative way of extracting features [34]. The second class
of general-purpose NR IQA metrics operates without human
scored images. For instance, natural image quality evaluator
(NIQE) [35] was developed to estimate the deviations from
statistical regularities observed in natural images without any
prior knowledge of image contents or distortion types. And
quality-aware clustering (QAC) [36] works by learning a set
of quality-aware centroids to act as a codebook to compute
the quality levels of image patches and infer the quality score
of the overall image.

In this article we modify NFSDM to design NR Free Energy
based Robust Metric (NFERM) by adding HVS inspired fea-
tures to improve prediction performance, and reducing the total
number of features by half. We can divide the used features
into three groups. The first one includes 13 features of the free
energy and the structural degradation information. The free
energy feature comes from the RR free energy based distortion
metric (FEDM) [17], which defines the psychovisual quality
as the agreement between an input image and the output of
internal generative model, while the structural degradation in-
formation is computed by the RR structural degradation model
(SDM) [19] that amends SSIM with itself. Although the two
RR IQA metrics still require partial reference information, the
free energy feature and the structural degradation information
of original images are found to be of an approximate linear
relationship. According to this observation, the dependence of
original references can be largely removed. More details can
be found in Section II-A.

Furthermore, the free energy theory reveals that the human
visual system (HVS) always attempts to reduce the uncertainty
based on the internal generative model when perceiving and
understanding an input visual stimulus. For example, human
brains can automatically restore or denoise a noisy image. We
apply the linear autoregressive (AR) model to approximate the
generative model to predict an image that the HVS perceives
from an input distorted one. Then, six important HVS inspired
features (e.g. structural information and gradient magnitude),
which are computed from the distorted and predicted images,
constitute the second group of features. The third group of four
features arises from the NSS model. We estimate the possible
losses of ‘naturalness’ in the distorted image by fitting the
generalized Gaussian distribution to mean subtracted contrast
normalized coefficients. An important note is that, with free
energy principle and image scene statistics, this paper links
FR, RR and NR IQA together, and proposes a general model
for higher performance via a proper integration of existing FR,
RR and NR IQA methods.

The remainder of this paper is organized as follows. Section
II first introduces the mainstream scheme of general-purpose
NR IQA algorithms, and then describes the proposed NFERM
in detail. In Section III, comparative studies of our NFERM
with classical FR IQA approaches and state-of-the-art NR IQA
metrics are conducted on five popular image databases (LIVE
[39], TID2008 [40], CSIQ [41], IVC [42], and Toyama [43]),
confirming the effectiveness of the proposed NFERM method.
Finally, some concluding remarks and highlights are given in
Section IV.

II. PROPOSED NR IQA METRIC

Existing distortion-specific blind measures, despite of well
performance, are greatly limited by the dependence of the
prior knowledge of the distortion category and the dedicated
application scenario. The general-purpose NR IQA, which can
simultaneously tackle various distortion types, therefore has
drawn more attention in recent days.

Broadly speaking, mainstream general-purpose NR image
quality metrics operate in three steps.
• First, the features are extracted, e.g. using the classical
NSS model.
• Second, the overall distorted images are randomly sepa-
rated into training and testing groups, and the model is then
acquired using support vector regressor (SVR) [44] on the
extracted features of images in the training group and the
corresponding subjective MOS values. Given those features
of one image f = {f1, f2, ..., fn} and the training set Φ1,
the model is defined as

model = SVR TRAIN([fi], [qi], Ii ∈ Φ1) (1)

where qi is the MOS value of the image Ii.
• Finally, the correlation performance of the NR IQA metric
is justified on the testing group with the obtained model. The
objective quality score sj of the image Ij is calculated by

sj = SVR PREDICT([fj ],model, Ij ∈ Φ2) (2)

where Φ2 is the testing set. Next, the correlation measured
between [qj ] and [sj ] in the testing set indicates the perfor-
mance of the NR IQA method.

We plot the flowchart of the mainstream scheme of NR IQA
metrics in Fig. 1. Note that feature extraction is the key point.

A. Feature Group One

The first group, composed of 13 features (f01-f13), comes
from two effective RR IQA algorithms (FEDM and SDM)
and their underlying connection. Our previous FEDM [17]
was realized according to the free energy theory, which was
recently revealed by Friston to explain and unify several brain
theories in biological and physical sciences about human ac-
tion, perception and learning [29]-[30]. Similar to the Bayesian
brain hypothesis [45], a basic premise of the free energy based
brain theory is that the cognitive process is manipulated by an
internal generative model. Using this generative model, the
human brain can actively infer predictions of the meaningful
information of input visual signals and avoid the residual
uncertainty in a constructive manner.

This constructive model is a probabilistic model in essential,
which can be decomposed into a likelihood term and a prior
term. The visual perception is then to infer the posterior
possibilities of the given scene by inverting this likelihood
term. It is natural that there exists a gap between the real
scene and the brain’s prediction, in that the generative model
cannot be universal. This gap between the external input and
its generative-model-explainable part is believed to be very
closely related to the quality of human visual perceptions, and
even can be use for the quality measure [17].
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(a)

(b)

Fig. 1: The flowchart of the mainstream scheme of NR IQA metrics:
(a) Using SVR to train some images and associated MOS values to
acquire the model; (b) Using SVR to predict objective quality scores
of the rest images based on the model for testifying performance.

For operational amenability, it is assumed that the internal
generative model G for visual perception is parametric, which
explains perceived scenes by adjusting the parameter vector g.
Given an image I , its ‘surprise’ (determined by entropy) can
be evaluated by integrating the joint distribution P (I, g) over
the space of model parameters g

− logP (I) = − log

∫
P (I, g)dg. (3)

We bring a dummy term Q(g|I) into both the denominator
and numerator in Eq. (3) and rewrite it as

− logP (I) = − log

∫
Q(g|I)

P (I, g)

Q(g|I)
dg. (4)

Here Q(g|I) is an auxiliary posterior distribution of the model
parameters given the input image signal I . It can be thought of
as an approximate posterior to the true posterior of the model
parameters P (g|I) evaluated by the brain. When perceiving
the image I or when adjusting the parameters g of Q(g|I) to
search for the optimal explanation of I , the brain will minimize
the discrepancy between the approximate posterior Q(g|I) and
the true posterior P (g|I) .

Then, we use Jensen’s inequality and obtain from Eq. (4):

− logP (I) ≤ −
∫
Q(g|I) log

P (I, g)

Q(g|I)
dg (5)

and define the right hand side as the free energy:

J (g) = −
∫
Q(g|I) log

P (I, g)

Q(g|I)
dg. (6)

As a consequence, the free energy estimation of the image I
can be expressed by

F (I) = J (ĝ) with ĝ = arg min
g
J (g). (7)

(a) (b)

Fig. 2: Illustration of the posterior distribution of the model param-
eters Q(g|I) by: (a) a natural image; (b) the associated distribution
of Q(g|I) computed using the AR model.

A model with higher expressive power approximates the
brain better but incurs higher computational complexity. More-
over, a more complex model with a large number of parameters
has a higher model cost in the theory of model selection [46],
and thus more difficult to estimate from observations. In this
paper we choose the generative model to be the linear AR
model for its simplicity and ability to well characterize a wide
range of natural scenes. The AR model is defined as

xn = χk(xn)λ+ εn (8)

where xn is a pixel in question, χk(xn) is a row-vector that
consists of k nearest neighbors of xn, λ = (λ1, λ2, ..., λk)T

is a vector of AR coefficients, and εn is the error term. More
details about how to get the λ can be found in the Appendix.
Next, we can use the input distorted image Id in a point-wise
manner to estimate the predicted version Ip via χk(xn) ·λopt,
where λopt is the optimal estimate of AR parameters for xn
based on the least square method. In this case, the distribution
of the model parameters Q(g|I) are represented by that of
the estimated AR parameters, which exhibits a center-peaked
appearance when the sampled data are large enough. In order
to illustrate this, a natural image and its auxiliary posterior
distribution of the model parameters Q(g|I) computed using
the first-order AR model are shown in Fig. 2.

In reality, the process of free-energy minimization is highly
related to the predictive coding, as pointed out in the efficient
coding theory [47] and the Infomax theory [48]. As a matter
of fact, supposing the internal generative model to be an AR
model, the process of free-energy minimization is equivalent to
encoding the input visual signal I with the minimum number

TABLE I: Important notations and abbreviations in this paper.

G The internal generative model
g The parameter vector
I The input image

P (I) The distribution of I
P (I, g) The joint distribution of I and g
P (g|I) The true posterior distribution of g given I
Q(g|I) The auxiliary posterior distribution of g given I
J (g) The free energy
F (I) The free energy estimation of I
xn The pixel in question

χk(xn) A vector including k nearest neighbors of xn
λ A vector of AR coefficients

AR Autoregressive model
PC Phase congruency
GM Gradient magnitude
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of bits based on the AR model [49]. To achieve the minimum
coding length, the piecewise AR model is the best choice, e.g.
model selection-based image compression [50]. Precisely, the
total description length of I with the kth-order AR model can
be expressed by

L(ĝ) = − logP (I|ĝ) +
k

2
logN (9)

where N is the number of pixels. The model is selected by
minimizing L(ĝ). As shown in [49], in the large sample limit
N →∞, the free energy is the total description length:

J (ĝ) = − logP (I|ĝ) +
k

2
logN with N →∞. (10)

Hence, the free energy of image can be approximated as the
total description length of the image data using the AR model,
i.e. the entropy (average information amount) of the prediction
residuals of Id and Ip plus the model cost. In this stage, we
choose a fixed-model order, and thus the second term k

2 logN
is constant and can be ignored in the quality evaluation. We
list important notations and abbreviations in Table I.

It was found that, for most images with various distortion
types and quality levels, their low-pass filtered versions have
different degrees of spatial frequency decrease, which inspires
the design of the other RR SDM model [19]. This phenomenon
reveals one limitation of SSIM about its inability to distinguish
distortion types and quality levels well. The SDM can solve
the problem by measuring the similarity between the structural
degradation information of original and distorted images, and
thus induces performance gain to some extent.

Specifically, following the definition of local statistics in
SSIM [4], we first define µI and σI as the local mean and vari-
ance of I with a 2D circularly-symmetric Gaussian weighting
function w = {w(k, l)|k = −K, ...,K, l = −L, ..., L}, which
satisfies sum(w) = 1 and var(w) = 1.5 (sum(·) and var(·)
compute sum and variance values). µ̄I and σ̄I have the same
definitions except using the impulse function instead of the
Gaussian weighting function. Then, the structural degradation
information is given by

Sa(I) = E(
σ(µI µ̄I) + C1

σ(µI)σ(µ̄I) + C1
) (11)

Sb(I) = E(
σ(σI σ̄I) + C1

σ(σI)σ(σ̄I) + C1
) (12)

where E(·) is a direct average pooling. σ(µI µ̄I) and σ(σI σ̄I)

represent the local covariance similar to the definition in [4].
C1 is a small constant to avoid the denominator to be zero.

Fig. 3: Illustration of interior parts or exterior parts of blocks. For
a block of size 8× 8, the dark gray part outside is the exterior part,
while the middle part colored with light gray is the interior part.

Fig. 4: The chosen thirty images of a broad range of scenes from
the Berkeley image database [51].

This paper picks three pairs of (K,L) as (1, 1), (3, 3) and
(5, 5), because Gaussian weighting functions of various sizes
introduce different amounts of neighboring pixels’ information
on one point. Also, note that the relationships between SDM’s
predictions and subjective scores are quite distinct for images
corrupted with white noise and other distortion types. Name-
ly, noise images of poorer quality have larger SDM values
whereas images of other distortion types with poorer quality
have smaller SDM values. We thereby modify Sa(I) to keep
different types of distortions consistent:

S̃a(I) =

{
−Sa(I) if F (I) > T

Sa(I) otherwise
(13)

TABLE II: Definitions of S̃a and S̃b for interior and exterior parts
as well as different (K,L) values.

Interior parts Exterior parts
S̃a S̃b S̃a S̃b

(K,L) = (1, 1) Ŝa1 Ŝb1 Ša1 Šb1

(K,L) = (3, 3) Ŝa3 Ŝb3 Ša3 Šb3

(K,L) = (5, 5) Ŝa5 Ŝb5 Ša5 Šb5

TABLE III: The estimates of parameters αs, βs, θs and φs for Ŝs

and Šs (s = {a1, a3, a5, b1, b3, b5}) using the least square method.

αs βs θs φs

Ŝa1 -13.279 15.194 Ša1 -7.8427 8.3219
Ŝa3 -7.9861 8.2961 Ša3 -12.399 14.808
Ŝa5 -13.019 14.988 Ša5 -6.7687 8.1662
Ŝb1 -13.326 15.236 Šb1 -7.8451 8.3282
Ŝb3 -8.0013 8.3093 Šb3 -12.378 14.795
Ŝb5 -13.096 15.051 Šb5 -6.8255 8.1973
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where T is set as 5 according to the observation. And Sb(I)
is modified as S̃b(I) similarly.

Since S̃a(I) and S̃b(I) are not effective quality measures
for JPEG compression (i.e. their values for JPEG compressed
images near to zero) [19], we use the segmentation of interior
and exterior parts in each block. As presented in Fig. 3, for
a block of size 8× 8, the dark gray part outside corresponds
to the exterior part, while the middle light gray part indicates
the interior part. Besides, some IQA approaches incorporating
the downsample strategy have attained better correlation with
human perception [9], [11], [14], [18]-[19]. This motivates us
to compute S̃a(I) and S̃b(I) at a reduced resolution (low-pass
filtered and downsampled by a factor of 2). We redefine the
structural degradation information in Table II.

In [34], we have shown that there exists an approximate
linear relationship between the structural degradation infor-
mation and the free energy feature of original images in
the LIVE database. We randomly selected thirty images of
different scenes (refer to Fig. 4) from the Berkeley database
[51], in order to better validate the generality and database-
independency of the NFERM. We use the Berkeley database
because existing IQA databases [39]-[43] will be used to
testify various NR IQA metrics in later experiments. We
then compare the structural degradation information Ŝs(Ir)
and Šs(Ir) (s = {a1, a3, a5, b1, b3, b5}) with the free energy
feature F (Ir) of those thirty images and draw their scatter
plots in Fig. 5. The linear dependence between the free energy
feature and the structural degradation information provides an
opportunity to characterize distorted images without original
image information. We fit the linear regression model:

F (Ir) = αs · Ŝs(Ir) + βs (14)

F (Ir) = θs · Šs(Ir) + φs (15)

where αs, βs, θs and φs are obtained based on the least square
method, and their values are reported in Table III.

Finally, we utilize ŜSs = F (Id) − (αs · Ŝs(Id) + βs) and
ŠSs = F (Id) − (θs · Šs(Id) + φs) to reduce the dependence
of original references, due to the fact that both ŜSs and ŠSs
values of high-quality images (with very few distortions) are
quite close to zero, whereas they will be far from zero when
distortions become larger. Consequently, we define the first
twelve features as follows:{

f01-f06 : ŜSs s = {a1, a3, a5, b1, b3, b5}
f07-f12 : ŠSs s = {a1, a3, a5, b1, b3, b5} .

Additionally, the NFEQM correlates well with human ratings
on noisy and blurred images (as listed in Table IV), so we use
it (namely F (Id)) as the feature f13 in the first group.

B. Feature Group Two

The second group of 6 features (f14-f19) is also inspired by
the free energy theory, which illustrates that the HVS always
attempts to perceive and understand an input visual stimulus
by reducing the uncertainty based on the internal generative
model. When watching a noisy image such as Fig. 6(a), one
will be quick to restore or denoise it automatically and catch
what that image means. This depends on the above-mentioned

Ŝa1(Ir) Ša1(Ir) Ŝa3(Ir)

Ša3(Ir) Ŝa5(Ir) Ša5(Ir)

Ŝb1(Ir) Šb1(Ir) Ŝb3(Ir)

Šb3(Ir) Ŝb5(Ir) Šb5(Ir)

Fig. 5: Scatter plots of the structural degradation information Ŝs(Ir)

and Šs(Ir) (s = {a1, a3, a5, b1, b3, b5}) vs. the free energy feature
F (Ir) on thirty images in the Berkeley database [51]. The straight
lines are fitted with the least square method.

internal generative model. Thus, we use the above linear AR
model to approximate the generative model, thereby to predict
an image that the HVS perceives from the input distorted one,
as exhibited in Fig. 6(b).

Recalling the approximation of the free energy in Section
II-A that the difference between the distorted image and its
predicted version is quantified by entropy, we measure that
difference in other fashions. As stated in [13], PSNR is good at
estimating content-independent distortions such as white noise,
while SSIM is suitable for content-dependent distortions such
as Gaussian blur, JPEG2000 (JP2K) and JPEG compressions.
Performance comparisons in Table IV confirm this conclusion,
namely PNSR and SSIM work effectively for white noise and
JP2K, JPEG, blur, fastfading. So we in this paper compute
PSNR between the distorted image Id and its predicted version
Ip as the feature f14:

f14 = 10 log10(
2552

1
M

∑M
i=1[Id(i)− Ip(i)]2

) (16)

where M is the number of pixels in the whole image. Next,
considering that contrast and structural similarities in SSIM are
more valid than the luminance similarity (for example, MS-
SSIM mainly focuses on contrast and structural similarities),
and furthermore, the luminance similarity is closely related to
PSNR, we choose contrast and structural similarities between
Id and Ip to be features f15-f16:

f15 = E(
2σ(Id)σ(Ip) + 2C1

σ2
(Id) + σ2

(Ip) + 2C1
) (17)
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(a) (b)
Fig. 6: Illustration of the internal generative model of human brains:
(a) a noisy image; (b) a predicted image with the linear AR model.

(a) (b)

Fig. 7: Scharr gradient operator [54].

f16 = E(
σ(IdIp) + C1

σ(Id)σ(Ip) + C1
). (18)

where E(·) is to compute the mean or expectation value.
The HVS is strongly sensitive to phase congruency (PC)

and gradient magnitude (GM), which have been shown to
be very effective in recent IQA techniques [11]-[13]. Instead
of defining features simply at pixels with sharp changes in
intensity, the PC model postulates that the HVS perceives
features at points, where the Fourier components are maximal
in phase. According to the physiological and psychophysical
evidences, the PC model provides a simple yet biologically
plausible model of how the HVS detects and identifies features
in an image [52]-[53]. Hence we set the feature f17 as

f17 = E(PCm) = E{max[PC(Id), PC(Ip)]} (19)

where PC is defined in the widely employed form [53]. On
the other hand, image gradient computation, a very classical
topic in image processing, is also valid in IQA performance
gains [11]-[12]. Gradient operators are inherently expressed
by convolution masks. In this study, we utilize the Scharr
operator [54], as illustrated in Fig 7. The GM is defined
as GM =

√
GM2

x +GM2
y , where GMx and GMy are the

partial derivatives of the image along horizontal and vertical
directions using the Scharr operator. This GM is taken as the
feature f18:

f18 = E(GMmap) = E(
2GM(Id) ·GM(Ip) + C2

GM(Id)2 +GM(Ip)2 + C2
). (20)

In most cases, salient areas (e.g. PCm) have a high impact
on HVS when evaluating image quality. We thus combine PC
and GM components weighted by PCm to derive the feature
f19:

f19 =
E(GMmap · PCmap · PCm)

E(PCm)
(21)

where
PCmap =

2PC(Id) · PC(Ip) + C3

PC(Id)2 + PC(Ip)2 + C3
(22)

and C2 and C3 are two fixed constants similar to C1.

C. Feature Group Three

The third group has four features (f20-f23). In [55], it
was found that the decorrelating function can be acquired by
applying a local non-linear operation to log-contrast luminance
to remove local mean displacements from zero log-contrast
and to normalize the local variance of the log-contrast. Further-
more, these normalized luminance values highly tend towards
a unit normal Gaussian characteristic for natural images, which
has been employed to model the contrast-gain masking process
in early human vision [56]. We therefore first compute mean
subtracted contrast normalized coefficients of the distorted
image Id following the method used in [33] and [35].

Next, we suppose that the distribution of above-mentioned
coefficients have characteristic statistical properties, which are
changed when distortions are exerted. For instance, as found
by Ruderman [55], those coefficients of natural images exhibit-
s a Gaussian-like appearance, while the Gaussian blur makes
those coefficients a more Laplacian appearance. Besides, it has
been found that the generalized Gaussian distribution (GGD)
can be used to validly catch a wider spectrum of statistics of
distorted images. So this paper estimates the GGD with zero
mean using the associated definition provided in [57]:

f(x;α, σ2) =
α

2βΓ( 1
α )

exp

(
−
(
|x|
β

)α)
(23)

where

β = σ

√
Γ( 1

α )

Γ( 3
α )

(24)

and the gamma function Γ(·) is given by:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (25)

In Eq. (23), the parameter α manipulates the ‘shape’ of the dis-
tribution, while the other parameter σ2 indicates the variance
of the distribution. In this research, the zero mean distribution
is selected owing to the generally symmetric distribution of
MSCN coefficients. We deploy this parametric model to fit the
MSCN empirical distributions from distorted images as well
as undistorted ones. For each image, we estimate two pairs of
parameters (α, σ2) from a GGD fit of the MSCN coefficients at
two scales - the original scale as well as at a reduced resolution
via a low-pass filtering followed by a downsampling with the
factor of 2. These constitute the last group of features.

D. Quality Evaluation

After feature extraction, we need to find a suitable mapping
that is learnt from the feature space to subjective MOS
values using a regression module, and then apply it to yield
objective quality scores. Of course, any regressor can be
used here. To show the effectiveness of extracted features
and make a fair comparison with the state-of-the-art, in
this paper we utilize SVR [44] following the method in
BRISQUE [33]. Here, the LIBSVM package [58] is adopt-
ed to implement SVR with a radial basis function (RBF)
kernel. The Matlab code of our metric will be released at
https://sites.google.com/site/guke198701/home.
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III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will test the prediction accuracy of the
proposed algorithm from three aspects: 1) to demonstrate the
effectiveness of our NFERM compared to classical FR IQA
and state-of-the-art NR IQA metrics on the LIVE database; 2)
to testify the robustness of NFERM through cross-validation
experiments on TID2008, CSIQ, IVC and Toyama databases;
3) to compare the performances of three groups of features
used in NFERM with each other.

A. Correlation with Human Opinions on LIVE

We first evaluate the performance of the proposed NFERM
with a total number of fifteen IQA approaches on the LIVE
database [39]: 1) classical FR PSNR, SSIM [4], MS-SSIM
[5]; 2) popular blind distortion-specific WNJE [21], MBBM
[22], Sheikh [23], SINE [24], JNB [26], CPBD [27], NFEQM
[17]; 3) state-of-the-art general-purpose NR DIIVINE [31],
BLIINDS-II [32], BRISQUE [33], NIQE [35], QAC [36]. The
LIVE database includes 779 distorted images by corrupting
29 pristine versions with five frequently encountered distortion
types: JP2K, JPEG, Additive White Gaussian Noise (AWGN),
Gaussian blur (Blur), and a Rayleigh fast-fading channel
simulation (FF). The subjective test was separately carried out
with each distortion type, and the corresponding DMOS value
for each distorted image was obtained accordingly.

To account for the correlation performance of our NFERM,
a training procedure is required to calibrate the regressor
module. Similar to the usual training method, we in this work
randomly separate those above 779 distorted images into two
subsets. One is the training set which consists of distorted
images corresponding to 80% original images, and the other
is the testing set containing the rest 20% distorted images. In
order to ensure that the proposed NFERM is robust across
image contents and is not governed by the specific train-test
split, we repeat this random 80% train - 20% test procedure
1000 times, and report the median result of the performance
across these 1000 iterations so as to eliminate performance
bias as much as possible.

In general, a nonlinear regression suggested by VQEG [59]
is first applied to map objective quality scores of testing IQA
metrics to subjective human ratings using the four-parameter
logistic function:

q(ε) =
ξ1 − ξ2

1 + exp (− ε−ξ3ξ4
)

+ ξ2 (26)

where ε and q(ε) are respectively the input score and the
mapped score, and ξj (j = 1, 2, 3, 4) are free parameters to be
determined during the curve fitting process. We then compute
two commonly used performance measures, Spearman’s rank
ordered correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (PLCC), between the objective quality
predictions and subjective DMOS values to evaluate those IQA
methods’ performances. The SROCC is defined as

SROCC = 1− 6

N(N2 − 1)

N∑
i=1

d2
i (27)

TABLE IV: Correlation performance of FR PSNR, SSIM, MS-
SSIM, blind distortion-specific WNJE, MBBM, Sheikh [23], SINE,
JNB, CPBD, NFEQM, state-of-the-art general-purpose NR DIIVINE,
BLIINDS-II, BRISQUE, NIQE, QAC, and the proposed NFERM (the
median value across 1000 times training) on LIVE and its five various
distortion types. We bold the best three performed metrics.

SROCC Type JP2K JPEG AWGN Blur FF All
(169) (175) (145) (145) (145) (779)

PSNR FR 0.8954 0.8809 0.9854 0.7823 0.8907 0.8756
SSIM FR 0.9355 0.9449 0.9629 0.8944 0.9413 0.9104
MS-SSIM FR 0.9654 0.9794 0.9745 0.9587 0.9315 0.9448
WNJE NR − 0.9735 − − − −
MBBM NR − − − 0.9015 − −
Sheikh NR 0.9130 − − − − −
SINE NR − − 0.9837 − − −
JNB NR − − − 0.7871 − −
CPBD NR − − − 0.9186 − −
NFEQM NR − − 0.9682 0.8845 − −
DIIVINE NR 0.9123 0.9208 0.9818 0.9373 0.8694 0.9250
BLIINDS-II NR 0.9323 0.9331 0.9463 0.8912 0.8519 0.9250
BRISQUE NR 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395
NIQE NR 0.9187 0.9422 0.9718 0.9329 0.8639 0.9086
QAC NR 0.8621 0.9362 0.9509 0.9134 0.8231 0.8683
NFERM NR 0.9415 0.9645 0.9838 0.9219 0.8627 0.9405

PLCC Type JP2K JPEG AWGN Blur FF All
(169) (175) (145) (145) (145) (779)

PSNR FR 0.8996 0.8879 0.9858 0.7835 0.8895 0.8701
SSIM FR 0.9410 0.9504 0.9695 0.8743 0.9428 0.9014
MS-SSIM FR 0.9697 0.9814 0.9724 0.9530 0.9200 0.9338
WNJE NR − 0.9786 − − − −
MBBM NR − − − 0.9194 − −
Sheikh NR 0.9201 − − − − −
SINE NR − − 0.9796 − − −
JNB NR − − − 0.8160 − −
CPBD NR − − − 0.8953 − −
NFEQM NR − − 0.9708 0.8921 − −
DIIVINE NR 0.9233 0.9347 0.9867 0.9370 0.8916 0.9270
BLIINDS-II NR 0.9386 0.9426 0.9635 0.8994 0.8790 0.9164
BRISQUE NR 0.9229 0.9734 0.9851 0.9506 0.9030 0.9424
NIQE NR 0.9262 0.9523 0.9763 0.9434 0.8794 0.9054
QAC NR 0.8648 0.9435 0.9180 0.9105 0.8248 0.8625
NFERM NR 0.9548 0.9817 0.9915 0.9371 0.8878 0.9457

where di is the difference between the i-th image’s ranks
in subjective and objective evaluations, and N indicates the
image number in the testing database. The SROCC is a non-
parametric rank-based correlation metric, independent of any
monotonic nonlinear mapping between subjective ratings and
objective scores. The PLCC is calculated by

PLCC =

∑
i(qi − q̄) · (oi − ō)√∑

i(qi − q̄)2 ·
∑
i(oi − ō)2

(28)

where oi and ō are the i-th image’s subjective rating and the
mean of the overall oi. qi and q̄ are the i-th image’s converted
objective score after nonlinear regression and their mean value.
A value close to 1 for SROCC and PLCC indicates superior
performance in terms of correlation between subjective human
opinions and objective quality predictions.

We tabulate those performance indices of competitive IQA
models in Table IV. It is apparent that the proposed metric
highly correlates with human opinion ratings. More concretely,
our NFERM outperforms state-of-the-art general-purpose NR
IQA methods, especially on all images as well as images of
white noise and JP2K compression. In addition, the prediction
accuracy of the NFERM is completely higher than popular
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TABLE V: The SROCC values of FR PSNR, SSIM, MS-SSIM, blind distortion-specific WNJE, MBBM, Sheikh [23], SINE, JNB, CPBD,
NFEQM, state-of-the-art general-purpose NR DIIVINE, BLIINDS-II, BRISQUE, NIQE, QAC, our NFERM on TID2008, CSIQ, IVC, Toyama
databases and associated various distortion types, and the database size-weighted averages. We bold the top three performed metrics.

Database TID2008 [40] CSIQ [41]
Metrics Type JP2K JPEG AWGN Blur All

(96) (96) (96) (96) (384)
PSNR FR 0.8248 0.8753 0.9177 0.9335 0.8703
SSIM FR 0.8785 0.9248 0.8110 0.9444 0.7678
MS-SSIM FR 0.9727 0.9391 0.8190 0.9630 0.8973
WNJE NR − 0.9212 − − −
MBBM NR − − − 0.7852 −
Sheikh NR 0.3093 − − − −
SINE NR − − 0.8885 − −
JNB NR − − − 0.7143 −
CPBD NR − − − 0.8542 −
NFEQM NR − − 0.8074 0.7407 −
DIIVINE NR 0.8419 0.5805 0.8322 0.8150 0.7749
BLIINDS-II NR 0.8968 0.8620 0.6062 0.8388 0.7985
BRISQUE NR 0.9037 0.9101 0.8227 0.8742 0.8978
NIQE NR 0.8939 0.8756 0.7775 0.8249 0.8006
QAC NR 0.8953 0.8773 0.5929 0.8408 0.8538
NFERM NR 0.9474 0.9365 0.8281 0.8436 0.9156

JP2K JPEG AWGN Blur All
(150) (150) (150) (150) (600)

0.9362 0.9019 0.9363 0.9291 0.9219
0.9207 0.9222 0.9255 0.9245 0.8767
0.9707 0.9626 0.9088 0.9728 0.9416
− 0.9551 − − −
− − − 0.8768 −

0.5697 − − − −
− − 0.9542 − −
− − − 0.7624 −
− − − 0.8853 −
− − 0.8380 0.8939 −

0.8308 0.7996 0.8663 0.8716 0.8284
0.8951 0.8986 0.7597 0.8766 0.8511
0.8665 0.9040 0.9252 0.9025 0.8990
0.9065 0.8826 0.8098 0.8944 0.8717
0.8699 0.9016 0.8222 0.8362 0.8416
0.9051 0.9223 0.9220 0.8964 0.9142

Database IVC [42] Toyama [43] Average
Metrics Type JP2K JPEG Blur All

(50) (50) (20) (120)
PSNR FR 0.8500 0.6740 0.8051 0.7708
SSIM FR 0.8501 0.8067 0.8691 0.8424
MS-SSIM FR 0.9320 0.9221 0.9443 0.9154
WNJE NR − 0.9451 − −
MBBM NR − − 0.8758 −
Sheikh NR 0.7759 − − −
SINE NR − − − −
JNB NR − − 0.6659 −
CPBD NR − − 0.7690 −
NFEQM NR − − 0.0158 −
DIIVINE NR 0.6535 0.3528 0.5185 0.3300
BLIINDS-II NR 0.7495 0.7705 0.5262 0.5481
BRISQUE NR 0.8331 0.8020 0.8239 0.8155
NIQE NR 0.8507 0.8451 0.8638 0.7915
QAC NR 0.8022 0.9135 0.8405 0.7676
NFERM NR 0.9177 0.9395 0.9120 0.8871

JP2K JPEG All
(84) (84) (168)

0.8605 0.2868 0.6132
0.9148 0.6263 0.7870
0.9470 0.8360 0.8870
− 0.8829 −
− − −

0.8649 − −
− − −
− − −
− − −
− − −

0.6114 0.7023 0.6416
0.7222 0.8678 0.7967
0.7970 0.8690 0.8572
0.8762 0.8378 0.8128
0.5629 0.6714 0.5189
0.8741 0.8638 0.8497

JP2K JPEG AWGN Blur All
(380) (380) (246) (266) (1272)

0.8800 0.7292 0.9290 0.9214 0.8513
0.8994 0.8423 0.8808 0.9275 0.8287
0.9609 0.9233 0.8738 0.9671 0.9185
− 0.9293 − − −
− − − 0.8437 −

0.6019 − − − −
− − 0.9286 − −
− − − 0.7378 −
− − − 0.8653 −
− − 0.8261 0.7726 −

0.7618 0.6640 0.8530 0.8246 0.7406
0.8382 0.8657 0.6998 0.8366 0.7995
0.8561 0.8844 0.8852 0.8864 0.8852
0.8893 0.8660 0.7972 0.8670 0.8349
0.7995 0.8461 0.7327 0.8382 0.7957
0.9106 0.9152 0.8854 0.8785 0.9035

blind distortion-specific measures used in this paper. And fur-
thermore, although FR IQA approaches are considered hardly
matchable with NR IQA metrics owing to the unavailability of
original images, our NFERM technique is still better than the
benchmark PSNR and SSIM, and is comparable to MS-SSIM.

Besides direct comparisons with numerous IQA metrics, we
further evaluate the statistical significance using the t-test [60],
which is used to determine if two sets of data are significantly
different from each other and is most commonly applied when
the test statistic would follow a normal distribution if the value
of a scaling term in the test statistic were known, on those
IQA methods’ SROCC values obtained from the 1000 train-
test trials. The null hypothesis is that the mean correlation
for our NFERM is equal to mean correlation for the column
algorithm with a confidence of 95%. A value of ‘1’ in the
table indicates that NFERM is statically superior to the column
algorithm, whereas a ‘-1’ indicates that NFERM is statistically
worse than the column. A value of ‘0’ indicates that NFERM
and the column algorithm are statistically indistinguishable (or
equivalent), i.e., we could not reject the null hypothesis at the
95% confidence level. Table VI provides the statistical results
of performance between the NFERM and each competing IQA

approaches considered. From Table VI we can conclude that
NFERM is statistically better than all of state-of-the-art NR
IQA algirhtms tested and FR PSNR and SSIM, as well as on
par with MS-SSIM. It is worth noting that, in addition to the
advanced performance, the proposed NFERM only adopts 23
features, much less than the 36 features used in the currently
best-performed NR BRISQUE.

B. Cross-Validation on Other Databases

Having testified our technique on the LIVE database, we
want to prove that the proposed NFERM is not limited to
LIVE. To show this, we use the whole images in LIVE to
train NFERM, and then apply it to other four image quality
databases as follows:
• The TID2008 database [40] is composed of 25 original
images and totally 1700 distorted images over 17 distortion
types at 4 distortion levels. Those distortion categories
include: AWGN (#01), additive noise in color components
is more intensive than additive noise in the luminance com-
ponent (#02), spatially correlated noise (#03), masked noise
(#04), high frequency noise (#05), impulse noise (#06),
quantization noise (#07), Blur (#08), image denoising (#09),
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TABLE VI: Results of one-sided t-test performed between SROCC values of the proposed NFERM and various IQA metrics on LIVE.
A value of “1” indicates that the NFERM is statically superior to the column algorithm; “-1” indicates that the NFERM is worse than the
column; a value of “0” gives indicates that the two algorithms are statically indistinguishable.

t-test PSNR SSIM MS-SSIM DIIVINE BLIINDS-II BRISQUE NIQE QAC
LIVE 1 1 0 1 1 1 1 1

TABLE VII: Performance comparison between our NFERM and other IQA methods with f-test and t-test. The symbol “1”, “0” or “-1”
means that the proposed NFERM is statistically (with 95% confidence) better, undistinguishable, or worse than the corresponding algorithms.

f-test PSNR SSIM MS-SSIM DIIVINE BLIINDS-II BRISQUE NIQE QAC
TID2008 1 1 0 1 1 0 1 1
CSIQ 1 1 0 1 1 1 1 1
IVC 1 1 0 1 1 1 1 1
Toyama 1 0 -1 1 0 0 0 1

t-test PSNR SSIM MS-SSIM DIIVINE BLIINDS-II BRISQUE NIQE QAC
TID2008 1 1 0 1 1 0 1 1
CSIQ 1 1 0 1 1 1 1 1
IVC 1 1 0 1 1 1 1 1
Toyama 1 0 -1 1 0 0 0 1

TABLE VIII: The SROCC results of NFERM and state-of-the-art NR IQA metrics (BRISQUE, NIQE and QAC) on each distortion type
in TID2008, CSIQ, IVC and Toyama databases. We emphasize the best performed NR IQA algorithm in each type.

TID2008
SROCC # 01 # 02 # 03 # 04 # 05 # 06 # 07 # 08 # 09 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17
NFERM 0.8281 0.8389 0.2126 0.1446 0.9125 0.0541 0.6655 0.8436 0.6589 0.9365 0.9474 0.1174 0.1817 0.0691 0.0777 0.0524 0.2419
BRISQUE 0.8227 0.7468 0.5691 0.6227 0.6285 0.6070 0.7399 0.8742 0.6354 0.9101 0.9037 0.3457 0.3156 0.0858 0.1703 0.1111 0.0585
NIQE 0.7775 0.6853 0.7447 0.7562 0.8632 0.7133 0.8010 0.8249 0.6260 0.8756 0.8939 0.1618 0.5853 0.1090 0.1795 0.1376 0.0405
QAC 0.5929 0.6911 0.1162 0.7294 0.8004 0.8603 0.5592 0.8408 0.4533 0.8773 0.8953 0.0537 0.4612 0.0956 0.3483 0.3094 0.2588

CSIQ IVC Toyama
SROCC JP2K JPEG AWGN Blur APGN CC JP2K JPEG Blur JPEG LC LAR JP2K JPEG
NFERM 0.9051 0.9223 0.9220 0.8964 0.6264 0.3774 0.9177 0.9395 0.9120 0.7943 0.8855 0.8741 0.8638
BRISQUE 0.8665 0.9040 0.9252 0.9025 0.2529 0.0473 0.8331 0.8020 0.8239 0.6830 0.7539 0.8706 0.8690
NIQE 0.9065 0.8826 0.8098 0.8944 0.2993 0.2292 0.8507 0.8451 0.8638 0.5532 0.7283 0.8762 0.8378
QAC 0.8699 0.9016 0.8222 0.8362 0.0019 0.2446 0.8022 0.9135 0.8405 0.8771 0.9266 0.5629 0.6714

JPEG (#10), JP2K (#11), JPEG transmission errors (#12),
JP2K transmission errors (#13), non-eccentricity pattern
noise (#14), local block-wise distortion of different intensity
(#15), mean shift (#16), and contrast change (#17). There
exists one artificial image in source images, so we selected
the rest 24 natural images and their corresponding 1632
counterparts as the testing bed, because the features used
in state-of-the-art NR IQA algorithms and NFERM mainly
rely on natural images.
• The CSIQ database [41] uses six distortions types (JP2K,
JPEG, AWGN, Blur, Additive Pink Gaussian Noise (APGN)
and contrast change (CC)) at four to five distortion levels
to produce 866 distorted images from 30 original ones.
• The IVC database [42] covers 185 images created from
10 pristine images. Those distortion types are as follows: 1)
JP2K (50 images); 2) JPEG (50 images); 3) Blur (20 im-
ages); 4) JPEG LUMICHR (25 images); 5) Local adaptive
resolution (LAR) coding (40 images).
• The Toyama database [43] includes the frequently used
JP2K and JPEG compressions, each of which consists of
84 distorted images generated from 12 source versions.

The SROCC is an important criteria in IQA performance
measures, which illustrates the monotonicity and convergency

between the objective quality metric and the subjective human
perception. Also, SROCC has been widely used to search for
the suitable parameters in some existing IQA approaches [6],
[14], [61]. So we apply SROCC in this cross-validation test
to measure and compare various IQA methods.

Table V presents the performance evaluations of NFERM on
TID2008, CSIQ, IVC and Toyama databases, and also reports
those testing IQA metrics’ SROCC results. For a more direct
and clear comparison, we compute the average values across
four image databases above, which is defined by

δ̄ =

∑
i δi · πi∑
i πi

(29)

where δi (i = 1, 2, 3, 4) indicates the correlation measure for
each database, and π is the number of images in each database
(i.e. 384 for TID2008, 600 for CSIQ, 120 for IVC, 168 for
Toyama) or each associated subset. We tabulate these average
results in Table V. It is very clear that the proposed NFERM
shows better correlation with human opinions on the overall
images and each distortion type.

We further measure the statistical significance of NFERM
using the f-test, which is most often used when comparing
statistical models that have been fitted to a data set to identify
the model that best fits the population from which the data
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TABLE IX: SROCC and PLCC values (after nonlinear regression) of each group of features in the proposed NFERM (the median value
across 1000 times training) on the whole 779 images in LIVE and the five various distortion categories.

SROCC JP2K JPEG AWGN Blur FF All
NFERM (f01-f13) 0.9034 0.9532 0.9754 0.9146 0.7746 0.8854
NFERM (f14-f19) 0.7715 0.8397 0.9677 0.8062 0.7923 0.8047
NFERM (f20-f23) 0.8294 0.8823 0.9631 0.8904 0.7954 0.8429
NFERM (f01-f23) 0.9415 0.9645 0.9838 0.9219 0.8627 0.9405

PLCC JP2K JPEG AWGN Blur FF All
NFERM (f01-f13) 0.9160 0.9691 0.9824 0.9137 0.8216 0.8901
NFERM (f14-f19) 0.7933 0.9016 0.9784 0.8417 0.8314 0.8236
NFERM (f20-f23) 0.8454 0.8880 0.9782 0.8961 0.8451 0.8466
NFERM (f01-f23) 0.9548 0.9817 0.9915 0.9371 0.8878 0.9457

TABLE X: SROCC and PLCC values of MS-SSIM, BRISQUE, and our NFERM and its three groups of features (the median value across
1000 times training) on four commonly encountered distortion types in LIVE (JP2K, JPEG, AWGN, Blur) and their overall 634 images.

SROCC Type JP2K JPEG AWGN Blur All
NFERM (f01-f13) NR 0.9430 0.9642 0.9831 0.9077 0.9535
NFERM (f14-f19) NR 0.8631 0.9445 0.9538 0.4377 0.8329
NFERM (f20-f23) NR 0.8061 0.9313 0.9546 0.2862 0.8064
NFERM (f01-f23) NR 0.9408 0.9632 0.9838 0.9196 0.9597
BRISQUE NR 0.9196 0.9622 0.9769 0.9569 0.9583
MS-SSIM FR 0.9654 0.9794 0.9745 0.9587 0.9510

PLCC Type JP2K JPEG AWGN Blur All
NFERM (f01-f13) NR 0.9533 0.9810 0.9902 0.9243 0.9576
NFERM (f14-f19) NR 0.8915 0.9600 0.9601 0.5970 0.8357
NFERM (f20-f23) NR 0.8240 0.9540 0.9643 0.3527 0.8205
NFERM (f01-f23) NR 0.9544 0.9812 0.9918 0.9378 0.9632
BRISQUE NR 0.9370 0.9767 0.9877 0.9639 0.9613
MS-SSIM FR 0.9697 0.9814 0.9724 0.9530 0.9383

are sampled, to compute the prediction residuals between
converted objective predictions (after the nonlinear mapping)
and subjective scores. We list the statistical significance be-
tween our algorithm and other competing IQA metrics in
comparison in Table VII, where the symbol “1”, “0” or
“-1” means that the proposed metric is statistically (with
95% confidence) better, indistinguishable, or worse than the
corresponding IQA approach. The t-test is also used here. It is
easy to find that, in each subset, NFERM is comparable to FR
MS-SSIM and a few distortion-specific blind measures, while
superior to other competitors. In the meantime, our algorithm
definitely outperforms mainstream FR IQA methods and state-
of-the-art NR IQA algorithms, yet slightly inferior to the
powerful MS-SSIM on average. It is worth mentioning that,
on frequently encountered distortion types, our NFERM works
with higher accuracy than state-of-the-art NR IQA metrics
and less features (only 23 features) than the currently best-
performed SVM-based BRISQUE of 36 features.

Those performance indices above have confirmed the valid-
ness of the proposed model across a broad range of image

Fig. 8: Correlation of features with human judgments of quality
(DMOS) for different distortion categories.

scenes, since original images in CSIQ and IVC are greatly
distinct from those in LIVE which our NFERM is trained
on. We further compare the correlation accuracy of NFERM
and state-of-the-art NR IQA metrics (BRISQUE, NIQE and
QAC) on each distortion category in TID2008, CSIQ, IVC and
Toyama databases. We report the SROCC values in Table VIII,
and label the best performed metric in each type. Our NFERM
has won twelve times the first place, whereas BRISQUE,
NIQE and QAC independently have five, seven and six times.
This also validates the effectiveness of the proposed NFERM
metric across various distortion types compared to state-of-
the-art NR IQA algorithms.

C. Analysis of NFERM’s Components

Considering that the proposed NFERM is constituted by
three groups of features, it is natural to compare the per-
formance of each group of features. The first group includes
f01-f13, the second group includes f14-f19, and the last one
includes f20-f23. We first plot in Fig. 8 the SROCC results
between each of those extracted features and DMOS values on
each distortion type in the LIVE database, so as to ascertain
how well the features correlate with human judgments of
quality. We then compute the median values of PLCC and
SROCC across the 1000 times random 80% train - 20%
iterations following the method in Section III-A, and report
the results in Table IX.

We have three important findings from above performance
comparisons. First, the first group of features is more effec-
tive than the other two. This finding may be explained by
the fact that the human visual perception to image quality
mainly depend upon two strategies: the decomposition and the
synthesization. The DCT and DWT decompositions have been
widely applied in existing IQA models [4], [7], [10], [32]. The
synthesization was recently developed with internal generative
model to approximate the human visual sensation of image
quality, which has brought remarkable IQA performance gain
[13], [17], [34], [38]. The first group of features was proposed
to fuse the structural degradation model (decomposition) and
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Fig. 9: Sample images of false contours in the LIVE FF subset.

the free energy feature about the brain theory (synthesization),
thereby acquiring considerably high performance.

Second, each of three groups of features works ineffectively
for the FF distortion. To illustrate this, we also testify the
performances of FR MS-SSIM, NR BRISQUE, as well as our
NFERM and its three groups of features on four distortion
types in LIVE, i.e. JP2K (169 images), JPEG (175 images),
AWGN (145 images), Blur (145 images), and their overall
634 images. The performance evaluations are listed in Table
X, which once again supports this finding and demonstrates
the superior performance of the first group of features in
NFERM. In practice, the FF distortion is quite different from
our commonly encountered distortion types (e.g. JP2K, JPEG,
noise and blur). For instance, We in Fig. 9 present a pair of
images of obvious false contours in the LIVE FF subset. Since
the features used in NFERM target to characterize natural
images, the proposed method cannot work very well on the
FF distortion in theory. Of course, there still is some room
for performance improvement by considering features that are
good at measuring FF distorted images.

Third, it needs to point out that three groups of features
in NFERM use various strategies. The first group of features
is motivated by a novel strategy of combining two effective
RR IQA metrics. The second group is inspired by the HVS.
And the third group is to quantify the possible losses of
‘naturalness’ in distorted images. In fact, from the testing
results in Table IV, IX-X, we can easily find that each group
of features performs well, and the whole 23 features have even
better performance.

IV. CONCLUSION

In this paper, we have proposed a new NR NFERM quality
metric with the recently revealed free energy principle and
important HVS inspired features before the SVM-based regres-
sion module. A comparison of our NFERM with classical FR
IQA methods, popular blind distortion-specific measures, and
state-of-the-art general-purpose NR IQA models is conducted
on five popular databases (LIVE, TID2008, CSIQ, IVC and
Toyama). Experimental results confirm the superior perfor-
mance of our introduced NR IQA algorithm on LIVE through
1000 times 80 % train - 20% test splits, and on other four
databases and each distortion type through across-validation
testings. Besides the substantially high prediction accuracy, it
is worth emphasizing two points: First, the proposed NFERM
only needs 23 features, far less than 36 features used in the
currently best-performed SVM-based BRISQUE; Second, a
new framework for the design of higher-performance and less-

features NR IQA metric is proposed in this work to combine
the merits of effective FR, RR and NR IQA approaches.

V. APPENDIX

For the AR image model xn = χk(xn)λ+εn with xn being
the pixel and χk(xn) being the row vector including k nearest
neighbors of xn, consider the data set I = {xn,χk(xn)},
n = 1, 2, . . . , N , containing N pixels and their corresponding
support vectors. The likelihood of the data set is given by a
quadratic function of λ as follows:

P (I|λ, β,H) =

(
β

2π

)N/2
exp (−βEI(λ)) (30)

with

EI(λ) =
1

2

N∑
n=1

(xn−χk(xn)λ)2 =
1

2
(X −Xλ)

T
(X −Xλ)

(31)
where X is a column vector with its n-th entry being xn and
X is a matrix with the n-th row being χk(xn).

The AR coefficients in λ are assumed to be drawn from a
zero mean spherical Gaussian distribution with precision α as
follows:

P (λ|α,H) =
( α

2π

)k/2
exp (−αEλ) (32)

where Eλ = 1
2λ

Tλ = 1
2

∑k
i=1 λ

2
i .

Assuming that α and β are drawn from a couple of Gamma
priors

P (α|H) = Γ(α; bα, cα)

P (β|H) = Γ(β; bβ , cβ) (33)

where the Gamma distribution, i.e.,

Γ(x; b, c) =
1

Γ(c)

xc−1

bc
exp

(
−x
b

)
, 0 ≤ x ≤ ∞ (34)

has mean bc and variance b2c.
If we write all the priors into one parameter vector θ, then

P (θ) = P (λ|α)P (α)P (β). (35)

We let P (I, g) = P (I|g)P (g) in Eq. (6) and have

J (g) =

∫
Q(g|I) log

Q(g|I)

P (I|g)P (g)
dg

=

∫
Q(g|I) log

Q(g|I)

P (g)
dg−

∫
Q(g|I) logP (I|g)dg

= KL(Q(g|I)||P (g)) + EQ[logP (I|g)] (36)

where KL(Q(g|I)||P (g)) measures the distance between the
recognition density and the true prior density of the model
parameters, and it attains zeros only when Q(g|I) = P (g).
EQ[logP (I|g)] measures the average likelihood of the data
over the approximating posterior density. The KL divergence
term splits into 3 sub-divergences terms over λ, α and β:

KL (Q(g|I)‖P (g)) = KL(λ) +KL(α) +KL(β). (37)
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Specifically, the KL divergence between Normal densities
q(x) = N (x;µq,Σq) and p(x) = N (x;µp,Σp) is

KL(q‖p) =
1

2

(
log
|Σp|
|Σq|

+ Tr
(
Σ−1
p Σq

)
+ (µq − µp)TΣ−1

p (µq − µp)− d
)

(38)

where d is the dimension of the variable x. The KL divergence
between Gamma densities q(x) = Γ(x; bq, cq) and p(x) =
Γ(x; bp, cp) is

KL(q‖p) = (cq − 1)Ψ(cq)− log bq − log Γ(cq) + log Γ(cp)

− cq + cp log bp − (cp − 1)(Ψ(cq) + log bq) +
bqcq
bp

. (39)

According to the analysis by in [62]-[63], the split optimiza-
tion process gives the following posterior distributions

Q(λ|I) = N (λ; λ̂, Σ̂)

Q(α|I) = Γ(α; b′α, c
′
α)

Q(β|I) = Γ(β; b′β , c
′
β) (40)

where

Σ̂ =
(
β̂XTX + α̂I

)−1

λ̂ = Σ̂XT β̂Y

b′α =

(
1

2
λ̂T λ̂+

1

2
Tr(Σ̂) +

1

bα

)−1

c′α =
k

2
+ cα

α̂ = b′αc
′
α

b′β =

(
ED(λ̂) +

1

2
Tr(Σ̂XTX) +

1

bβ

)−1

c′β =
N

2
+ cβ

β̂ = b′βc
′
β . (41)

Normally, uninformative priors are used for the Gamma
distributions in Eq. (33), e.g., b = 103, c = 10−3. However,
informative priors can also be constructed via estimating the
mean µ and variance σ2 of the data (and using equations µ
= bc and σ2 = b2c). The posterior distributions are initialized
using the ML estimations λ̂ = λML and Σ̂ = ΣML with

λML =
(
XTX

)−1
XTY

σ2
ML =

1

N − 1

N∑
n=1

(χk(xn)λML − xn)2

ΣML = σ2
ML

(
XTX

)−1
. (42)

The free energy term can be written as

F (g) =
N

2

(
Ψ(c′β) + log b′β

)
− β̂

(
ED(λ̂) +

1

2
Tr(Σ̂XTX)

)
− N

2
log 2π (43)

with Ψ is the digamma (logarithmic derivative of Γ) function.
The optimization process outlined above can be summarized

as a two-step EM-like approach as follows.

1) E-Step: With model parameter fixed at λt−1, update
hyper-parameters α and β to minimize F (g).

2) M -Step: With hyper-parameters fixed at αt and βt,
update model parameter λ to minimize F (g).

This process has been shown to be a general case of the
EM algorithm. This process is then iterated till the objective
function of free energy converges. Further details about the
implementation of the aforementioned iterative optimization
algorithm can be found in [62]-[63].
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